Indian Statistical Institute, Bangalore B.Math (Hons.) III Year/ M.Math II year 2018-2019 Semester I : Probability III/ Markov Chains

Final Exam	Date: 20.11.2018
Maximum Marks: 90	Duration: 3 hours

Note: Any score above 90 will be taken as 90. State the results very clearly that you are using in your answers.

- 1. (10 + 15) Let P be the transition probability matrix of an irreducible Markov chain on a state space of size n.
 - (a) Show that $(I + P)^{n-1}$ is a positive matrix (a matrix with all entries positive).
 - (b) If the chain is aperiodic and n = 3, show that P^5 is also a positive matrix.
- 2. (15) Consider *i.i.d* Bernoulli random variables $\{Z_i\}_{i=0}^{\infty}$ which take value 1 with probability p. Let $X_n = (\sum_{i=0}^n Z_i) \mod k$, for all $n \ge 0$ where k is some fixed integer. Show that $\{X_n\}$ is an irreducible homogeneous Markov chain on state space $\{0, 1, 2, \ldots, k-1\}$. Find its period and the limiting distribution of X_n .
- 3. (15+5) Let $\{N(0,t]: t > 0\}$ be a time-homogeneous Poisson process with rate $\lambda > 0$. For $n \ge 1$, let S_n be the waiting time until the *n*-th event. Let 0 < s < t and $n \ge 1$.
 - (a) Find $P[S_1 < s | N(0, t] = n]$
 - (b) Prove that $\lim_{t\to\infty} \frac{N(0,t]}{t}$ exists and find the value of this limit.
- 4. (10) Let P be the transition probability matrix of an irreducible Markov chain on a finite state space. Each column sum of P is 1. Starting from any state i, find the expected time taken for the first return to i. (Hint: conditions for positive recurrence)
- 5. (10) Let $p_k = \frac{2}{3^{k+1}}$ $(k \ge 0)$. Find the fixed points of the function $f(s) = \sum_{k=0}^{\infty} p_k s^k$ in [0, 1] and the extinction probability of the Galton Watson process with offspring distribution p_k .

6. (15) Let $\{X_n\}_{n\geq 0}$ be a homogeneous Markov chain on state space \mathbb{N} with transition probability matrix given by

$$P_{ij} = \begin{cases} p_j & \text{if } i = 1\\ 1 & \text{if } j = i - 1, i > 1\\ 0 & \text{otherwise} \end{cases}$$
(1)

where $p_j > 0 \forall j \in \mathbb{N}$. Show that the Markov chain $\{X_n\}$ is irreducible and recurrent. Derive the necessary and sufficient conditions for the chain to be positive recurrent.

7. (10) For a continuous time pure birth process with infinitesimal birth rate λ , Find $P_{02}(t)$.